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Abstract

Recent evidence has suggested that diabetic neuropathy (DN) is pathophysiologically related to 

both impaired angiogenesis and a deficiency of neurotrophic factors in the nerves. It is widely 

known that vascular and neural growths are intimately associated. Mesenchymal stem cells 

(MSCs) promote angiogenesis in ischemic diseases and have neuroprotective effects, particularly 

on Schwann cells. Accordingly, we investigated whether DN could be improved by local 

transplantation of MSCs by augmenting angiogenesis and neural regeneration such as 

remyelination. In sciatic nerves of streptozotocin (STZ)-induced diabetic rats, motor and sensory 

nerve conduction velocities (NCVs) and capillary density were reduced, and axonal atrophy and 

demyelination were observed. After injection of bone marrow-derived MSCs (BM-MSCs) into 

hindlimb muscles, NCVs were restored to near-normal levels. Histological examination 

demonstrated that injected MSCs were preferentially and durably engrafted in the sciatic nerves, 

and a portion of the engrafted MSCs were distinctively localized close to vasa nervora of sciatic 

nerves. Furthermore, vasa nervora increased in density, and the ultrastructure of myelinated fibers 

in nerves was observed to be restored. Real-time RT-PCR experiments showed that gene 

expression of multiple factors involved in angiogenesis, neural function, and myelination were 

increased in the MSC-injected nerves. These findings suggest that MSC transplantation improved 

DN through direct peripheral nerve angiogenesis, neurotrophic effects, and restoration of 

myelination.
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INTRODUCTION

Diabetic neuropathy (DN), the most prevalent complication of diabetes, affects up to 60% of 

diabetic patients and frequently leads to foot ulcers and may result in limb amputations (31). 

Despite a continuous increase in the incidence of diabetes mellitus, there is no effective 

treatment for DN, and the only available measures are glucose control and pain management 

(9).

Neuroaxonal dystrophy is considered the pathological hallmark of DN in humans and 

chronic experimental diabetes (45), and considerable attention has been paid to the altered 

growth factor signaling in the degeneration of sensory neurons in diabetes. Schwann cells 

(SCs) also undergo substantial degenerative changes in DN (10). Although there is some 

controversy about alterations of the peripheral nervous system in genetic or induced 

experimental models of DN (48), there are many reports in the literature of morphological 

abnormalities in the myelinated fibers of the sciatic and tibial nerves of streptozotocin 

(STZ)-diabetic rats, such as axonal atrophy, axon–myelin separation, and demyelination 

(6,11,33,49). Myelinating SCs require axon-derived signals for regulating myelin thickness, 

which is one determinant of nerve conduction velocity (39), but the morphologic 

abnormality of SCs can be independent of axonal degeneration in diabetic humans and 

felines (40).

DN is characterized by reduction of vascularity in peripheral nerves and deficiency in 

angiogenic and neurotrophic factors (19,26,47). Studies have reported that experimental DN 

is characterized by reduced microcirculation in peripheral nerves from the destruction of the 

vasa nervora, the blood vessels within the nerves, and thus administration of angiogenic 

factors such as vascular endothelial growth factors (VEGFs), sonic hedgehog (SHH), and 

statin could restore neural function by augmenting angiogenesis (16,29,47). In addition, 

deficiency of neurotrophic factors, including nerve growth factor (NGF), ciliary 

neurotrophic factor (CNTF), glial-derived neurotrophic factor (GDNF), and brain-derived 

neurotrophic factor (BDNF), were reported as an important mechanism that underlies DN 

(4,14,41,53). Growing evidence suggests that many representative growth factors have dual 

neurotrophic and angiogenic effects and were even named angioneurins (30,56). Some 

examples include VEGF (52), insulin-like growth factor (IGF) (34), NGF (46), BDNF (24), 

and fibroblast growth factor-2 (FGF2, also known as bFGF) (32). To reverse the 

manifestations of DN, clinical trials have attempted to deliver a single neurotrophic or 

angiogenic factor as treatment in the form of protein or gene therapy; however, the effects 

were reported to be very modest if not negligible, presumably due to the complex 

pathophysiologic nature of human DN (1,21).

Recent studies have demonstrated that bone marrow (BM)-derived cells can effectively treat 

ischemic cardiovascular diseases through their paracrine effects (8,22,26). Since BM-derived 

cells include multiple angiogenic and neurotrophic cytokines, and cells exert paracrine 

effects more durably than the protein forms of these same cytokines, attempts were made to 

treat experimental DN using these cells, and the DN improved. Our group reported that BM-

derived endothelial progenitor cells (EPCs) and mononuclear cells exert favorable 

therapeutic effects via enhanced neural neovascularization and neuroprotection (19,26). 
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These studies strongly support DN being a disorder with pathogenic involvement of both 

vascular and neural components, with myelination being an important determinant of 

peripheral nerve function. Prior studies did not address the effects of BM-EPCs on SCs and 

myelination, and based on their scope of action, it is likely that there is no effect.

BM-MSCs have emerged as an important source for cell therapy. Since MSCs are 

expandable in culture and easy to obtain in large numbers, they have advantages over 

mononuclear cells and EPCs for cell therapy. MSCs can differentiate into multiple cell types 

(18) and secrete various angiogenic and neurotrophic factors, including FGF2 and VEGF 

(28). Owing to robust paracrine effects on cell survival and angiogenesis, MSCs were 

reported to be effective for the treatment of ischemic diseases such as myocardial infarction 

(13,55) and limb ischemia (3,15,28). MSCs were also reported to transdifferentiate into SC-

like cells when cultured under specific conditions (2,23,44). While there are many potential 

advantages of using MSCs for DN, no studies have investigated their direct effects on neural 

angiogenesis and myelination in DN.

Accordingly, in the present study, we sought to investigate whether local transplantation of 

MSCs could attenuate or reverse DN by modulating both angiogenesis and neural aspects. 

Here we provide the first evidence that intramuscularly injected BM-MSCs preferentially 

migrated to nerves and directly modulated the function of diabetic nerves. MSC 

transplantation augmented vascularity and restored myelination by increasing humoral 

factors, such as angiogenic and neurotrophic factors, as well as myelination-related genes.

MATERIALS AND METHODS

Induction of Diabetes

All animal protocols were approved by the Institutional Animal Care and Use Committees at 

Emory University School of Medicine. We induced diabetes in 8-week-old male Wistar rats 

(Harlan, Indianapolis, IN, USA) by IP injection of STZ (75 mg/kg in 0.9% sterile saline; 

Sigma-Aldrich, St. Louis, MO, USA). Serum glucose levels were measured using an Accu-

Check gluco meter (Roche Diagnostics, Indianapolis, IN, USA) 2 weeks later, and all 

animals with glucose levels <300 mg/dl were excluded from the study. These diabetic (DM) 

rats were randomly assigned to BM-derived MSC or saline injection groups 12 weeks after 

the induction of diabetes. Age- and sex-matched rats were used as nondiabetic (NDM) 

controls and received the same treatment.

Isolation of MSCs and Cell Culture

Bone marrow mononuclear cells from Wistar rats were isolated using HISTOPAQUE®-1083 

(Sigma-Aldrich) according to the manufacturer's instructions. Whole bone marrow 

mononuclear cells from normal rats were plated in low-glucose (100 mg/dl) Dulbecco's 

modified Eagle medium (DMEM; Life Technologies, Grand Island, NY, USA) 

supplemented with 15% FBS (Life Technologies) and antibiotics (antibiotic–antimycotic; 

Life Technologies). After 3 days of incubation in a humidified incubator at 37°C with 5% 

CO2, nonadherent hematopoietic cells were removed by changing the medium. The adherent 
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MSCs were further cultured as previously described (25). Passages 2 to 4 cells were used for 

this study.

Measurements of Nerve Conduction Velocity

Nerve conduction velocities (NCVs) were measured in hindlimbs bilaterally using standard 

orthodromic surface recording techniques and a Teca TD-10 portable recording system 

(Oxford Instruments, Abingdon, Oxfordshire, UK) at baseline (before treatment) and 2, 4, 

and 8 weeks after treatment (19). Motor NCV was calculated by dividing the distance 

between stimulating electrodes by the average latency difference between the peaks of the 

compound muscle action potentials evoked from two sites (sciatic notch and ankle). Sensory 

NCV was calculated by dividing the distance between stimulating and recording electrodes 

by the latency of the signal from the stimulation artifact to the onset of the peak signal. For 

each nerve, maximal velocities were determined bilaterally.

Fluorescent Imaging of Blood Vessels in Sciatic Nerves

Diabetic nerves were harvested 4 weeks after injection of DiI-labeled MSCs, fixed in 4% 

paraformaldehyde (Sigma-Aldrich) at 4°C for 16 h, and incubated in 30% sucrose (Sigma-

Aldrich) solution for 24 h. Frozen sections of the nerves were obtained at a 14-µm thickness. 

Vascularity of sciatic nerves from both nondiabetic and diabetic rats was assessed by in situ 

fluorescent staining using the EC-specific marker BS-1 lectin conjugated to fluorescein 

isothiocyanate (FITC; Vector Laboratories, Burlingame, CA, USA) (19). Hindlimbs were 

perfused with FITC-conjugated BS-1 lectin (1 mg per rat) by IV injection. Fifteen minutes 

later, the animals were sacrificed, and the sciatic nerves were harvested and fixed in 4% 

paraformaldehyde. After fixation, samples were either whole mounted for longitudinal 

analysis or embedded in OCT compound (Sakura Finetek USA, Inc., Torrance, CA, USA) 

for frozen sections. Samples were analyzed using a computer-assisted Nikon fluorescence 

microscope with digital camera (Eclipse TE200; Nikon Inc., Tokyo, Japan). The number of 

vessels was counted in 10 randomly selected cross-sections under fluorescent microscopy 

(200×).

Real-Time Quantitative PCR

Gene expression was determined by TaqMan® real-time quantitative PCR on the 7500 Real 

Time PCR System (Life Technologies) using TaqMan® PCR Master Mix (Life 

Technologies) (27). Total RNA was extracted from tissue or cells with RNeasy Plus Mini Kit 

(Qiagen, Venlo, Limburg, Netherlands) according to the manufacturer's instructions. First-

strand cDNA was generated using the TaqMan® Multiscribe Reverse Transcription Kit (Life 

Technologies) primed with a mix of oligo dT and random hexamers. Relative mRNA 

expression of target gene normalized to GAPDH was calculated by using the formula 

relative expression level = 2−∆Ct, where ∆Ct = Ct gene of interest – Ct GAPDH. The primers 

and probes were designed using Primer Express 3.0 (Life Technologies) (Table 1).

Histochemistry of Nerves

The structure of the sciatic nerve was determined at 4 weeks after MSC or PBS (Cellgro®; 

Corning, Corning, NY, USA) treatment as previously described by our group (47). Briefly, 
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the nerve was fixed in 0.1 M sodium cacodylate (Sigma-Aldrich) buffer containing 2% 

glutaraldehyde (Sigma-Aldrich), 2% paraformaldehyde, and 3.5% sucrose for 2 h at 4°C 

with agitation. After three washes in 0.1 M sodium cacodylate buffer (10 min each), the 

rings were postfixed with 1% osmium tetroxide (Sigma-Aldrich) on ice for 2 h and washed 

three times (10 min each), all in 0.1 M sodium cacodylate buffer. The rings were then 

embedded in Epon 812 (Electron Microscopy Sciences, Hatfield, PA, USA) mixture and 

polymerized in an oven at 60°C for 24 h after dehydration in increasing concentrations of 

ethanol (50%, 70%, 80%, 90%, 95%, and 100%) and propylene oxide (Sigma-Aldrich) 

series (20 min each). Semithin (0.5–0.8 µm in thickness) sections were collected on the slide 

glass and subjected to toluidine blue (Sigma-Aldrich) followed by light microscopy. For the 

transmission electron microscope (TEM) study, embedded blocks were sectioned on an 

ultramicrotome with a diamond knife, and ultrathin sections were collected on copper grids. 

The grids were stained with 2.5% uranyl acetate (7 min; Sigma-Aldrich) and Reynolds lead 

citrate (2 min; Sigma-Aldrich) and were viewed with a Phillips 300 electron microscope.

Isolation and Culture of Schwann Cells

SCs were isolated from the sciatic nerve of Wistar rats (Harlan) through a series of 

enzymatic digestion, trituration, and cultivation steps on laminin (Sigma-Aldrich)-coated 

plates, concluding with fluorescence-activated cell sorting (FACS) with an antibody against 

NGFR (p75NTR, 1 µg/ml; STEMCELL Technologies Inc., Vancouver, BC, Canada). 

Isolated SCs and S16, a rat Schwann cell line, were cultured in high glucose (~900 mg/dl; 

Life Technologies) media to study whether neurotrophic factors and myelin-related genes 

are reduced in SCs. Normal MSCs and SCs isolated from diabetic rats were cocultured in 

MSC culture media at a 1:1 ratio for 1–10 days, and medium was changed every 48 h. At 

day 7, the mixture of MSCs and SCs was detached by trypsinization (trypsin; Life 

Technologies), and SCs were sorted again by magnetic-activated cell sorting (MACS) with 

anti-NGFR (p75NTR) antibody (STEMCELL Technologies Inc.). qRT-PCR on isolated SCs 

was used to examine whether MSCs affect gene expression of SCs.

Statistical Analysis

All results were expressed as a mean value ± SEM. Statistical analysis was performed by 

Student's t-test for comparisons between two groups. A value of p < 0.05 was considered to 

be statistically significant.

RESULTS

Local Transplantation of MSCs Improves NCVs in Diabetic Neuropathy

To investigate the therapeutic effects of local transplantation of MSCs on diabetic nerves, 

diabetic rats were randomly assigned to MSC (DM + MSC)- or saline-treated (DM + PBS) 

groups. After intramuscular injection of 5 million MSCs or an equal volume of PBS around 

the sciatic nerves, we measured both motor and sensory nerve conduction velocities (NCVs) 

at 0, 2, 4, and 8 weeks (n = 4–6, each group) after treatment. We selected this dose based on 

our previous study with the same rat DN model and studies by others in which MSCs were 

used for hindlimb ischemia or infarcted heart (17,26,38). Nondiabetic rats that received PBS 

(NDM + PBS) or MSCs (NDM + MSCs) were used as controls. Electrophysiological study 
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showed about 38% decrease in both motor and sensory NCVs in diabetic rats (DM) at 12 

weeks of diabetes compared to nondiabetic rats (NDM), indicating development of severe 

peripheral neuropathy (NDM + PBS vs. DM + PBS: motor NCV, 78.4 ± 8.7 m/s vs. 49.2 

± 3.5 m/s; sensory NCV, 71.0 ± 2.4 m/s vs. 43.5 ± 3.0 m/s; p < 0.05 for both) (Fig. 1A, B). 

After local injection of MSCs, both motor and sensory NCVs of diabetic rats (DM + MSC) 

were restored to normal levels over 8 weeks (76.8 ± 3.3 m/s and 75.1 ± 3.0 m/s, both p < 

0.05 vs. DM + PBS; not significantly different from NDM + PBS or NDM + MSC). These 

data indicate that MSCs could effectively improve reduced NCVs in diabetic rats.

MSCs Increase Vascularization in Diabetic Nerves

To examine changes in the functional blood vessels at the histological level, we harvested 

sciatic nerves 4 and 8 weeks after treatment, following systemic injection of FITC-

conjugated BS-1 lectin to visualize functional blood vessels. Whole mount longitudinal 

images demonstrated that the nerves from nondiabetic rats (NDM + PBS) were well 

vascularized and had clear epineurial longitudinal networks and penetrating branches 

running from epineurial to endoneurial vessels (Fig. 2). However, in diabetic rats (DM + 

PBS), both the epineurial and endoneurial vessels, and especially small branches from the 

epineurial vessels, were markedly decreased, leaving focal areas very poorly vascularized. In 

contrast, MSC-injected diabetic rats (DM + MSC) showed increased vascularity in sciatic 

nerves, particularly small branches of epineurial blood vessels (Fig. 2A). The area of vessels 

in the sciatic nerves was significantly higher in the MSC-transplanted rats compared to the 

PBS-injected ones (Fig. 2B).

Transplanted MSCs Are Preferentially Localized to Nerves and Vasa Nervora

To explore the mechanisms underlying the improvement in nerve function following MSC 

treatment, we examined MSC distribution 4 and 8 weeks after cell injection. To track the 

injected MSCs, we labeled them with a red fluorescent dye, CM-DiI. Because we injected 

cells directly into the thigh muscles, we examined the cell fate in both muscles and sciatic 

nerves. Before sacrifice, FITC-conjugated BS-1 lectin was injected into the abdominal aorta 

to visualize blood vessels in hindlimbs. Whole mount longitudinal images under fluorescent 

microscopy showed that a large number of the injected MSCs were engrafted in nerves (Fig. 

3A), and many of them were observed along the vasa nervora (Fig. 3B). These findings 

clearly support the tropism of MSCs toward nerves in diabetes. This close spatial 

relationship of MSCs with vasa nervora suggests that neurally engrafted MSCs were likely 

to have induced angiogenesis in the vasa nervora by secreting cytokines and by physical 

interaction.

MSC Transplantation Increases Expression of Angiogenic and Neurotrophic Factors 
Reduced in Diabetic Nerves

Accordingly, we next determined whether transplantation of MSCs can increase gene 

expression of angiogenic and neurotrophic factors in diabetic sciatic nerves harvested at 2 

weeks after treatment. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that 

mRNA expression levels of angiogenic and neurotrophic genes in diabetic nerves were 

significantly lower than in nondiabetic control nerves (DM + PBS vs. NDM + PBS, Vegfa: 

0.4 ± 0.1-fold, Hgf: 0.2 ± 0.1-fold, Mmp2: 0.3 ± 0.1-fold, Cxcl12: 0.5 ± 0.1-fold, p < 0.001; 
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Fgf2: 0.5 ± 0.2-fold, Angpt1: 0.1 ± 0.03-fold, Angpt2: 0.4 ± 0.1-fold, Nos3: 0.4 ± 0.1-fold, 

Igf1, 0.2 ± 0.1-fold, Ngfb: 0.4 ± 0.2-fold, Ccl2: 0.4 ± 0.1-fold, p < 0.01; Pgf: 0.4 ± 0.2-fold, 

p < 0.05) but were significantly increased by MSC transplantation (DM + MSCs vs. DM + 

PBS, Vegfa: 4.4 ± 1.0-fold, Igf1: 4.4 ± 1.0-fold, Mmp2: 5.3 ± 1.7-fold, Ccl2: 5.6 ± 1.3-fold, 

Cxcl12: 3.5 ± 0.7-fold, p < 0.001; Angpt1: 19.6 ± 8.2-fold, Angpt2: 2.9 ± 0.8-fold, Nos3: 

3.2 ± 1.1-fold, p < 0.01; Fgf2: 3.2 ± 1.3-fold, Pgf: 2.9 ± 1.2-fold, Hgf: 6.6 ± 3.7-fold, Ngfb: 

3.0 ± 1.3-fold, p < 0.05) (Fig. 4). These findings indicate that intramuscular injection of 

MSCs restored the defective expression of multiple humoral factors associated with 

angiogenesis and neuronal survival in diabetic nerves.

MSC Transplantation Restores Ultrastructural Morphology of Myelinated Fibers Altered in 
Diabetic Nerves

We then examined whether MSC transplantation could affect the ultrastructure of diabetic 

nerves, which is characterized by morphological alterations in the myelin sheath, a hallmark 

of DN. Accordingly, we performed transmission electron microscopy for sciatic nerves 

obtained at 4 weeks after MSC or PBS injection. Ultrastructure of the sciatic nerve in the 

NDM + PBS group was normal (Fig. 5A). In the DM + PBS group, degeneration of 

myelinated axons was apparent with splitting and infolding of the lamellae in the myelin 

sheath. Axonal atrophy, illustrated by noticeable shrinkage of the axon detached from the 

myelin sheath, was also observed (Fig. 5B). However, the diabetic animals treated with 

MSCs (DM + MSC group) showed markedly fewer morphologic alterations in 

ultrastructural features of myelin sheath and axons. Lamellar separation of the myelin sheath 

and axonal atrophy were less obvious. The fine structure of SCs in the DM + MSC group 

was seemingly normal, as in the NDM + PBS group (Fig. 5C). These data suggest that MSC 

transplantation restored the ultrastructure of the myelin sheath and axons in diabetic sciatic 

nerves.

Gene Expression Related to Myelination Is Reduced in Diabetic Nerves and Is Increased by 
MSC Transplantation

We next explored whether MSC transplantation could also affect the myelination-related 

genes that are exclusively expressed in SCs. We harvested sciatic nerves 2 weeks after 

intramuscular injection of MSCs or PBS and conducted qRT-PCR. We found that mRNA 

expression of genes related to myelination was in general decreased in diabetic nerves, 

showing statistically significant reduction in myelin basic protein (Mbp) and nerve growth 

factor receptor (Ngfr, also known as p75NTR) (DM + PBS vs. NDM + PBS, Mbp: 0.1 

± 0.04-fold, Ngfr: 0.1 ± 0.1-fold, p < 0.001). After MSC transplantation, expression of all 

these genes clearly increased, with significant statistical difference shown for Mbp (DM + 

PBS vs. DM + MSC, 14.3 ± 11.2-fold, p < 0.001) (Fig. 6). Expression of early growth 

response 2 (Egr2, also known as Krox20), S100 calcium-binding protein B (S100b), and 

Ngfr was not significant due to large individual variations (Fig. 6). These data suggest that 

MSC injection paracrinely modulated gene function related to SCs and myelination.
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Reduced Gene Expression in Cultured Schwann Cells Are Restored by Coculture With 
MSCs

To further confirm paracrine effects of MSCs on the gene expression of Schwann cells in a 

more controlled setting, we cocultured these two cells in normal and two high-glucose 

conditions (450 mg/dl and 900 mg/dl). Seven days after culture, only SCs were isolated from 

coculture by MACS with anti-NGFR (p75NTR) antibody. As a control, SCs were cultured 

alone without MSCs under the same conditions. The SCs that were either cultured alone or 

cocultured with MSCs were subjected to qRT-PCRs. In single-cultured SCs, the expression 

levels of neurotrophin receptors Ngfr and Ntrk3 (also known as TrkC) were significantly 

decreased in high compared to normal glucose conditions. However, cocultured SCs showed 

significantly higher expression of these two genes compared to single-cultured SCs in high-

glucose conditions (Fig. 7). Similar patterns were found in neurotrophins Cntf and Gdnf, 

which are key mediators for peripheral nerve myelination, myelination-related genes Mbp, 

Mpz, Pmp22, Mag, Egr2, and S100b, and cell survival gene Akt1 (Fig. 7). These results 

provide strong support that MSCs modulate the gene expression of SC identity and function 

in diabetic conditions.

DISCUSSION

In this study, we have demonstrated that local transplantation of BM-derived MSCs 

improved experimental DN through direct effects on peripheral nerves. DN is characterized 

by vascular insufficiency, axonal atrophy, and myelination defects. As a common 

pathogenetic mechanism, deficiency of both angiogenic and neurotrophic factors are 

suggested. Accordingly, we hypothesized that a therapy that can modulate both vascular and 

neural components would effectively reverse DN. In this regard, MSCs are an optimal 

candidate because they possess paracrine factors that affect both angiogenic and neural 

components. In this study, we have identified several new mechanisms by which MSCs can 

improve DN. While other studies have suggested the indirect effects of MSCs on DN, that is, 

enhanced angiogenesis in the muscle by MSC injection improved blood flow in diabetic 

nerve (50), our study for the first time demonstrated the direct effects of MSCs on peripheral 

nerves. First, our study demonstrated engraftment of numerous MSCs in the diabetic nerves. 

Second, a robust increase in vascularity in diabetic nerves was found after MSC 

transplantation. Third, this study also offers the first evidence that MSCs can directly 

modulate myelination and axonal regeneration through their paracrine effects in DN.

The neurotropism of BM-derived MSCs is of note. Intramuscularly injected MSCs migrated 

to the sciatic nerves and were heavily localized within the nerves, particularly near vasa 

nervora. Although the mechanism remains to be determined, such a significant magnitude of 

tropism of MSCs to blood vessels is unreported. These phenomena were previously noted in 

our studies with BM-derived EPCs and mononuclear cells and seem to be a common 

mechanism for BM-derived cells on diabetic nerves (19,26). The engrafted MSCs survived 

in the nerves long term (>8 weeks). While studies showed the short-lasting engraftment of 

transplanted BM cells in a myocardial infarction model (5,42), our data demonstrated that 

the same cells remain engrafted much longer in the peripheral nerves, suggesting the 

importance of host niches for survival of the transplanted cells. These common 
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characteristics of BM-derived cells, that is, robust peripheral neurotropism, sustained 

engraftment, and vascular localization, could have caused robust and prolonged paracrine 

effects and led to the reversal of functional and histological impairment of peripheral nerves 

in DN.

MSC transplantation increased anatomical and functional vascularity in diabetic nerves, 

which was shown by BS-1 lectin perfusion studies. Mechanistically, angio-genesis played a 

major role in enhanced neovascularization in nerves; we found hardly any 

transdifferentiation of MSCs into endothelial cells. Supporting this notion is the increased 

expression of representative angiogenic factors, such as Vegfa, Fgf2, Angpt1, Angpt2, Pgf, 

Hgf, Nos3, Igf1,and Ngfb after MSC transplantation, which were reduced in diabetic nerves. 

These factors also function as neurotrophic factors, which can protect neurons and recover 

SC function. This upregulation of dual angio-neurotrophic factors may be one of the greatest 

benefits of stem cell therapy over a single protein or gene therapy, as this function can 

induce neural and vascular recovery synergistically.

MSC transplantation also restored neural structure and function in diabetic nerves. MSCs 

directly upregulated the expression of myelination-related genes and neurotrophic factors, 

enhanced the cellular functions of SCs and neurons, and restored myelinated fiber structures 

in diabetic nerves. In our DN model, decreased motor and sensory NCVs indicated the 

presence of defects in myeli-nation. In fact, electron microscopy studies demonstrated 

degenerative changes in axons and defective myelination in the sciatic nerves. Moreover, 

expression of genes related to myelination, such as Mbp and Ngfr, as well as the above-

mentioned angio-neurotrophic factors were significantly suppressed in DN. SCs synthesize 

myelin while providing multiple support roles for the axon, contributing to saltatory 

conduction along axons, nerve and axon development, and axonal regeneration. SCs also 

provide a microenvironment favoring neural regeneration partially due to production of 

several neurotrophic factors (12). Dysfunction of SCs is known to play an important role in 

the pathogenesis of DN where hyperglycemia is considered pathogenic (20,51). In this 

study, in vitro experiments with cultured SCs in high-glucose conditions elicited reduced 

gene expression of neurotrophin receptors Ngfr and Ntrk3; neurotrophins Cntf and Gdnf; 

myelination-related genes Mbp, Mpz, Pmp22, Mag, Egr2, and S100b; and cell survival 

factors Akt and Vegfa, indicating dysfunction of SCs. Experiments with both MSC 

transplantation in vivo and coculture of diabetic SCs with MSCs in vitro demonstrated 

restoration of expression of these genes to nondiabetic levels, suggesting powerful paracrine 

effects of MSCs on SCs and, potentially, neurons that can underlie improved neural function 

and myelination in DN. While further studies are required to fully elucidate the molecular 

mechanisms, these direct effects of MSCs on SCs and neurons could offer new insight into 

the treatment of DN. Although previous studies have reported that MSCs can be 

transdifferentiated into cells with a SC phenotype (7,23,35–37), we rarely found such 

transdifferentiation in this study, ruling out their meaningful contribution to the therapeutic 

effects. In addition, a study reported that the functional features of transdifferentiated cells 

are still questionable (43).

There are some shared features of BM-derived cells between MSCs, EPCs, and MNCs in 

their effects on DN (19,26). All these cell types ameliorate DN through dual vascular and 

Han et al. Page 9

Cell Transplant. Author manuscript; available in PMC 2016 June 02.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



neurotrophic effects. These cells improved neural function, increased the vascularity, and 

demonstrated neurotropism, particularly vasa nervora. However, MNCs have less long-term 

engraftment potential compared to EPCs and MSCs. While angio-neurotrophic genes were 

generally enriched in all cell types, the types of increased genes were different among cell 

types. In MSCs, myelin-related and neurotrophin family genes were more abundant, which 

could underlie therapeutic effects on myelination and axonal regeneration. From a practical 

aspect, MSCs are more appealing for clinical application due to their easy and inexpensive 

isolation and expansion characteristics as well as their lack of significant immunogenicity.

Advanced DN, which has no other therapeutic option, can be an initial optimal target for cell 

therapy. Since this stage of DN is commonly associated with diabetic foot ulcers and/or 

peripheral vascular disease for which MSCs are also reported effective, a therapeutic 

approach of using MSCs in this advanced DN can be more valuable and effective. As the 

safety of autologous BM-derived MSCs has been documented by a number of clinical trials 

(54,57), MSC therapy for DN can be easily translated into clinical trials. Taken together, 

these findings suggest that BM-derived MSC transplantation represents a novel therapeutic 

option for treating DN.
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Figure 1. 
Local transplantation of MSCs improved nerve conduction velocities (NCVs) in diabetic 

nerves. Twelve weeks after streptozotocin injection, both motor NCVs (A) and sensory 

NCVs (B) in diabetic rats were significantly lower than in age-matched non-diabetic rats 

(NDM + PBS vs. DM + PBS: **p < 0.05; n = 6–8, each group). MSC injection significantly 

improved both motor (A) and sensory NCVs (B) in diabetic rats over 8 weeks (DM + PBS 

vs. DM + MSC: *p < 0.05; n = 6–8, each group). Abbreviations: MSC, bone marrow-

derived mesenchymal stem cells; DM + MSC, diabetic rats treated with MSCs; DM + PBS, 

diabetic rats treated with PBS; NCV, nerve conduction velocity; NDM + MSC, nondiabetic 

rats treated with MSCs; NDM + PBS, nondiabetic rats treated with PBS.
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Figure 2. 
MSC transplantation improved neural vascularity in diabetic nerves. Rat hindlimbs were 

perfused with FITC-conjugated BS-1 lectin 4 and 8 weeks after MSC transplantation to 

visualize functional blood vessels. In longitudinal whole-mount images of the sciatic nerves, 

vasa nervora, represented by green fluorescence (A), and quantification of vascular area at 8 

weeks after MSC transplantation (B) indicated that control diabetic nerves (DM + PBS) 

showed a marked decrease in small branches of large epineurial blood vessels and percent 

vascular area. This reduced neural vascularity in diabetic control rats (DM + PBS) compared 

to nondiabetic rats (NDM + PBS) was significantly increased after MSC transplantation 

(DM-MSC). n = 4. Abbreviations: MSC, bone marrow-derived mesenchymal stem cells; 

DM + MSC, diabetic rats treated with MSCs; DM + PBS, diabetic rats treated with PBS; 

NDM + PBS, non-diabetic rats treated with PBS. Scale bar: 100 µm.
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Figure 3. 
Intramuscularly injected MSCs migrated and engrafted in nerves. (A) A representative 

whole-mount image of a sciatic nerve from a diabetic rat after perfusion with FITC-

conjugated BS-1 lectin (green) demonstrated preferential and sustained engraftment of DiI-

labeled MSCs (red) into sciatic nerves at 4 and 8 weeks after MSC transplantation. (B) 

Higher magnification images showed alignment of MSCs mainly along the vasa nervosa at 8 

weeks after MSC transplantation. Scale bars: 100 µm (A) and 50 µm (B).
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Figure 4. 
Upregulation of various humoral factors in diabetic sciatic nerves injected with MSCs. Two 

weeks after intramuscular injection of MSCs, total RNA was isolated from the sciatic 

nerves. The levels of mRNA of multiple humoral factors were determined by qRT-PCR and 

normalized to Gapdh × 1,000. The levels of angiogenic and neurotrophic factors were 

significantly higher in diabetic nerves injected with MSCs (DM + MSC) than in those 

treated with PBS (DM + PBS) (*p < 0.05; **p < 0.01; ***p < 0.001; n = 4–6).
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Figure 5. 
Degenerative structure of myelin in diabetic nerves restored by MSC transplantation. (A) 

Electron microscopy of sciatic nerve cross-sections from nondiabetic rats injected with PBS 

(NDM + PBS), diabetic rats injected with PBS (DM + PBS), and diabetic rats injected with 

MSCs (DM + MSC). (B) Diabetic nerves (DM + PBS) showed splitting and infolding 

lamellar layers in myelin sheaths and separation of shrunken axon from myelin sheath 

(arrows). (C) MSC-treated diabetic nerves (DM + MSC) showed restored ultrastructure of 

myelinated fibers and axons similar to normal. Scale bars: 5 µm (A) and 2 µm (B, C).

Han et al. Page 18

Cell Transplant. Author manuscript; available in PMC 2016 June 02.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6. 
Effect of MSC injection on the levels of myelination-related genes. Two weeks after 

intramuscular injection of MSCs, total RNA was isolated from the sciatic nerves. The levels 

of mRNA of myelination-related genes were determined using qRT-PCR and normalized to 

Gapdh ×1,000. The levels of Mpb, a major myelination protein for peripheral nerve, were 

significantly higher in diabetic nerves treated with MSC (DM + MSC) than in those treated 

with PBS (DM + PBS). *p < 0.05, **p < 0.0, ***p < 0.001 (n = 4–6).
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Figure 7. 
Upregulation of neurotrophic factors and myelination-related genes in diabetic Schwann 

cells cultured with MSCs. Schwann cells (SCs) were cultured with and without MSCs in 

different glucose concentrations to mimic diabetic conditions. Seven days after culture, only 

SCs were isolated by MACS and subjected to qRT-PCR. The expression levels of SC-

specific genes were reduced at 450 mg/dl and 900 mg/dl glucose compared to the levels at 

Han et al. Page 20

Cell Transplant. Author manuscript; available in PMC 2016 June 02.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



100 mg/dl (dotted lines), but were significantly increased after coculture with MSCs. *p < 

0.05, **p < 0.01, ***p < 0.001 (n = 4–6).
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