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Failure of bone repair is a challenging problem in the management of fractures. There is a 

limited supply of autologous bone grafts for treating nonunions, with associated morbidity 

after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells 

(MSCs) hold promise for healing of bone because of their capacity to differentiate into 

osteoblasts and their availability from a wide variety of sources. Our review aims to 

evaluate the available clinical evidence and recent progress in strategies which attempt to 

use autologous and heterologous MSCs in clinical practice, including genetically-modified 

MSCs and those grown on scaffolds. We have compared various procedures for isolating 

and expanding a sufficient number of MSCs for use in a clinical setting. 

There are now a number of clinical studies which have shown that implantation of MSCs 

is an effective, safe and durable method for aiding the repair and regeneration of bone.

The healing of fractures depends on the inter-

acting triad of the osteogenic cell, the osteo-

inductive stimulus and the osteoconductive

matrix scaffold.1

Various natural or synthetic biomaterial

grafts have been developed with excellent

osteoconductive properties. There may be

local morbidity after harvesting autologous

bone graft from the iliac crest and a limited

supply of bone is available.2,3 These limita-

tions have encouraged the use of allografts.

However, despite their availability and the

decreased rates of complication, there

remains the possible risk of  transmission of

disease, diminished biological and mechanical

properties in comparison with autologous

bone, and higher costs.4 In recent years, inter-

est has risen in the use of deproteinated and

defatted xenografts which give reduced

immune responses, but these grafts have

reduced osteoconductive properties.5 Syn-

thetic substitutes include ceramics, mixes of

collagen and ceramic, coral derivatives and

bioactive glass.5 These are potentially attrac-

tive alternatives, but because of varied prop-

erties of restorability, higher costs and

variation in their osteoconductive, osteoin-

ductive and mechanical properties, they are

considered to be less useful than allografts.5

Even after grafting, healing is not guaranteed

unless fresh cells are recruited to the fracture

site. Osteoinductive molecules are responsible

for supporting the cellular migration and

differentiation of the new progenitor cells

required for the formation of new bone.6 One of

the important types of cell which are influenced

by these osteoinductive molecules is the mesen-

chymal stem cell (MSC), a vital component in

the natural process of new bone formation.

Because of a lack of an adequate supply of

autologous bone grafts and the unsuitability of

allografts, there has been some impetus to use

MSCs, one of the body’s own versatile progeni-

tor cells, to encourage repair.

The aims of our review are to describe the

role of MSCs in bone repair and regeneration,

to evaluate the techniques used to apply MSCs

in clinical studies and to discuss what further

studies are required to expand their use.

MSCs and bone repair

After a fracture, a haematoma forms which

prevents excessive extravasation.7 The plate-

lets, inflammatory cells and macrophages

arriving at the site of injury secrete cytokines

and growth factors, including platelet-derived-

growth factor, bone-morphogenetic proteins

(BMPs), vascular-endothelial-growth-factor

and interleukin-1 to -6.7 This cellular response

triggers the invasion of the MSCs which differ-

entiate into osteoblasts and chondrocytes in

order to complete the repair.7 MSCs from the

periosteum, bone marrow, circulating blood

and the surrounding soft tissues have been

shown to contribute to bone repair in rodent

models.8-11 The management of a defect in the
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femur of athymic rats showed that a ceramic scaffold

loaded with expanded MSCs gave significantly more new

bone formation at 12 weeks and stronger bone than a scaf-

fold without MSCs. This study confirmed that the MSCs

formed bone by differentiating into osteoblasts.8

MSCs are non-immunogenic. They do not express major

histocompatibility class II and co-stimulatory molecules,

including CD40, CD80, and CD86.12 Hence, allogeneic

transplantation of MSCs should not require immuno-

suppression of the host. Most importantly, MSCs do not

induce the proliferation of lymphocytes.13 They have

immunosuppressive properties and suppress the proliferation

of T-cells and cytokine production in response to alloantigens

or insignificant mitogens, as well as inhibiting the function of

B cells,14 dendritic cells15 and the natural killer cells.16

MSCs show homing potential which is affected by numer-

ous cytokines and growth factors, including stromal cell

derived growth factor-1 (SDF-1) and its receptor CXCR4,

which have been shown to act as a potential homing signal

for MSCs in bone healing. In a mouse model of a femoral

defect, Kitaori et al17 showed that bone formation was medi-

ated by expression of SDF-1 in the periosteum, causing

recruitment of MSCs to the bone lesion. However, some stud-

ies have reported low levels of CXCR4 expressed by MSCs

and have found that blocking CXCR4 had no effect on the

migration of MSCs, suggesting that other molecules may be

involved. There is no consensus on the mode of migration of

MSCs since some studies have shown them in the circula-

tion,18 whereas others have found no evidence of this.19

Isolation and expansion of MSCs

MSCs are frequently isolated from the marrow of the supe-

rior iliac crest, but MSCs from the femur and the tibia during

hip and knee replacements are a suitable alternative. How-

ever, since only 0.001% to 0.01% of mononuclear cells from

bone marrow are MSCs,20 an efficient method of isolation is

required. This is usually achieved by density gradient centrif-

ugation using Ficoll or Percoll.21 When cells are layered over

Ficoll or Percoll and centrifuged, layers of red blood cells, fat

cells and mononuclear cells (MNCs) are formed according to

their densities. The MNCs containing potential MSCs which

form the middle layer can be aspirated, purified (Fig. 1a) and

expanded (Fig. 1b) in a short period of time. With optimal

conditions they can be cultured up to passage 30, although

the proliferation and differentiation potentials of MSCs are

reduced because of senescence, the Heyflick effect and telo-

mere shortening.22,23 Early passage cells (< 10) are considered

to be most useful and their senescence can be circumvented by

the addition of growth factors or by expanding them in a

three-dimensional bioreactor which mimics the environment

in vivo.24 An important barrier to the use of ex vivo expanded

MSCs is the risk of introducing pathogens and xeno-

immunisation because of the use of fetal bovine serum for

their culture. Increasingly, serum-free media are used for

culture thus making it possible to use them for clinical appli-

cations.25 The main therapeutic usefulness of MSCs is their

ability to differentiate into osteocytes, chondrocytes and

adipocytes in the ex vivo environment (Fig. 2). They can be

differentiated in vitro into osteoblasts by the addition of dex-

amethasone and ascorbic acid, although no study has com-

pared whether differentiated or undifferentiated MSCs differ

in their ability to aid bone regeneration.

Application of stem cells in bone regeneration

After MSCs are expanded ex vivo they are either intro-

duced by systemic infusion, or growth on a scaffold and

Fig. 1a

Figure 1a – Flourescence Activated Cell Sorting (FACS) analysis of bone-marrow-derived mesenchymal stem cells (MSCs) which can be used to purify
them further. Live CD34-105+ cells were gated for CD90 and CD73 positive cells. More than 90% of the cells were CD34-73+90+105+, and hence were
considered as MSCs according to the definition of the Mesenchymal and Tissue Stem Cell Committee of the International Society.62 Figure 1b – light
photomicrograph of MSCs which have been expanded using two-dimensional culture systems after isolation from bone marrow (× 20 magnification).

Fig. 1b
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applied directly to the site of the lesion, or genetically mod-

ified before being used in a scaffold.

Expanded MSCs introduced by systemic infusion. Animal

models have shown that MSCs can migrate to the bone mar-

row after peripheral injection and remain there for an extended

duration.26 Studies have shown the successful infusion of ex

vivo expanded MSCs into human volunteers27,28 indicating

that this is feasible and well tolerated. Systemic infusion of

MSCs for bone regeneration has been successfully used by

Horwitz et al29 in treating osteogenesis imperfecta. Six children

with severe osteogenesis imperfecta received two infusions of

allogeneic MSCs. Five children showed homing of MSCs into

one or more sites including bone, skin and marrow stroma

with an acceleration of bone growth of between 60% and 94%

compared with matched unaffected children.29 However, this

technique has not been used in the repair of fractures. This may

be because of reports30,31 showing that most of the infused

MSCs became trapped in the lungs with only a few migrating

to the site of injury. Direct application of MSCs to the fracture

is deemed to be more practical,32 with research into systemic

infusion of MSCs being more academically driven.

Application of MSCs grown on scaffolds. Scaffolds serve as

carriers for cultured MSCs before implantation. Scaffolds

need to mimic the natural environment of the bone matrix

and should be safe to be used in clinical practice (Fig. 3).33-35

The synergistic effect of using composites of scaffolds with

growth factors has been shown to increase the formation and

vascularisation of bone.36,37 Numerous scaffolds have been

investigated in pre-clinical studies, although hydroxyapatite

(HA) and calcium phosphate seem to be favoured because of

their excellent osteoconductive properties.38 HA provides

good strength but is not resorbed, while beta-tricalcium

phosphate (β-TCP) is fragile but has a greater capacity for

resorption.39 Hence, a combination of HA and β-TCP,

biphasic calcium phosphate, is typically used.40 HA also has

poor mechanical properties and bone formed using an HA

composite cannot maintain the mechanical loading needed

for remodelling.41 In order to overcome this, HA can be

combined with biodegradable polymer/bioceramic compos-

ites, including polylactic-co-glycolic acid, which allows for

better control over shaping micro- and macrostructure com-

posites for bone regeneration.42
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Fig. 2

Diagram showing the multi-differentiation potential of mesenchymal stem cells. They can differentiate into osteocytes, chondrocytes,
adipocytes, myocytes, neurone-like cells and fibroblasts.
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The fibres of the extracellular matrix (ECM), their inter-

connecting pores and HA crystals making up the bone tis-

sue all have nano-scale dimensions (< 100 nm in one

dimension).35 Therefore manufacturing nano-composite

materials is of interest since it provides three-dimensional

(3D) constructs which fit the size of the surrounding

matrix, promoting cell adhesion and matrix interactions.16

More recently, mechanical stability has been identified as

an important factor in the repair of fractures. Three-

dimensional polymer scaffolds with dimensions of 150 μm

to 500 μm have been shown to have excellent stability.43 Ex

vivo mechanical loading has an additive effect on BMP2-

induced osteogenesis in genetically-engineered MSC-like

cells,44 and mechanical stimulation of MSCs has shown

them to differentiate into adipocytes, chondrocytes and

osteocytes.45

Quarto et al46 expanded bone-marrow-derived stem cells

for three weeks and seeded them on to macroporous HA

scaffolds to treat nonunion. At seven months the three

treated patients showed good integration of the implant.

Angiographic evaluation after seven years showed vascu-

larisation of the grafted zone, which is vital for the survival

and future stability of the graft. Before such scaffolds can

be used in clinical practice, a resorbable ceramic scaffold is

needed since ceramic masks the newly-formed bone, mak-

ing radiological follow-up difficult.46 Marcacci et al47 also

showed that in vitro expanded MSCs loaded on to porous

HA ceramic scaffolds can heal diaphyseal defects with

good integration when followed up after five to seven

years.

Warnke et al48 described a new bone-muscle-flap tech-

nique for the treatment of a mandibular defect. The outer

scaffold replacement was designed using computer soft-

ware, placed in an external titanium mesh loaded with HA

blocks coated with BMP-7 and MSCs and then implanted

into latissimus dorsi for growth of blood vessels and bone.

After seven weeks, the constructed mandible was removed

and fixed to the stumps of the original mandible. The

patient regained full function of his jaw by four weeks

after operation. Since BMP-7 and MSCs were used

together, it was difficult to determine whether the results

were solely due to the presence of the MSCs. Furthermore,

because of ethical issues a tissue sample from the jaw was

not available to demonstrate complete healing of the man-

dible. However, this is a promising approach to avoid

donor-site morbidity associated with bone transplantation

with no risk of aesthetic disturbance.48

The ex vivo differentiation of MSCs into osteoblasts is

another technique which has emerged. Morishita et al49 used

an HA scaffold to differentiate MSCs ex vivo into osteo-

blasts to heal the defect in a patient after curettage of a

tumour, which illustrated that tissue-engineered osteogenic

ceramics may be an alternative to autologous bone grafting.

A tissue-engineered prosthesis has been used successfully in

three patients with osteoarthritis of the ankle with no

adverse reactions and high clinical scores.50 Kitoh et al51

injected differentiated bone-marrow-derived stem cells

with platelet-rich plasma without a scaffold into three fem-

ora and two tibiae in two patients undergoing distraction

osteogenesis to obtain the target lengths without major

complications.

MSCs have been successfully used in the treatment of

osteonecrosis of the femoral head. Kawate et al52 cultured

MSCs and applied MSCs/beta-TCP composite granules for

steroid-induced osteonecrosis of the femoral head and

found that this treatment prevented progression and

showed early bone regeneration at 34 months, but it was

not useful in the presence of pre-operative collapse.
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Fig. 3

Diagram showing the scaffold requirements for both the patient and surgeon for
mesenchymal stem cells to be used in clinical practice. 
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Allograft bone chips containing bone-marrow-derived

cells have been used for spinal fusion.53 Expanded MSCs

have also been used in spinal fusion using porous β-TCP

scaffolds seeded with MSCs. Of 41 patients, fusion was

demonstrated in 95%.54 With limited evidence supporting

the role of MSCs in spinal fusion, further investigation

using randomised control trials is required.

Genetically modified MSCs. Although the combination of

growth factors and scaffolds remains a promising approach,

there are limitations in the long-term release of growth fac-

tors to promote the proliferation and maintenance of MSCs.

Therefore genetic modification of MSCs to express growth

factors, which involves either transfection of MSCs

through viral vectors or by the use of non-viral vectors, is a

suitable alternative. Viral vectors have been shown to elicit

immune reactions and have variable ability to transfect

dividing and non-dividing cells efficiently.55 However, com-

pared with non-viral vectors, they show better expression

of the desired protein and their efficiency in transfection is

better. Viral vectors are often the optimal choice for gene

delivery in MSCs.

Numerous osteoinductive growth factors have been

used to modify MSCs and have been shown to give suc-

cessful bone induction in vivo. BMP-2-transfected MSCs

showed bone formation in mouse hindlimbs and in bony

union of critical-sized mouse radial defects.56 In another

study, Lin et al57 compared adipose- and bone-marrow-

derived stem cells (ADSC/BMSCs) which had been geneti-

cally modified with BMP-4 to repair defects in the calvarial

bone in rabbits and found no significant difference in bone

regeneration. Furthermore, in vitro studies showed that

deposition of ECM was significantly higher in differenti-

ated ADSCs than in BMSCs.57 Fat was detected in ADSC-

seeded ECM, thus requiring further investigation of their

use in bone defects especially in those bearing load.57 To

date, no clinical studies have applied ex vivo-expanded

genetically-modified MSCs because of the need to identify

the optimal growth factor and the vector to ensure effec-

tive, safe and consistent treatment.

Application of non-expanded MSCs for bone 

regeneration

MSCs can be applied for bone regeneration without expan-

sion ex vivo in order to avoid cost and time. After the pre-

liminary work by Herzog58 in 1951 which demonstrated

the procedure of percutaneous bone grafting, many clinical

studies have successfully applied MSCs for bone regenera-

tion. In 1995 Connolly59 demonstrated in a series of 100

skeletal healing problems, including delayed unions and

nonunions of fractures, arthrodeses, and bone defects that

MSCs were effective in bone repair when applied in this

way. However, this and earlier studies did not report the

number of MSCs needed to give optimum healing.

Hernigou et al60 showed that bone healing depended on

the number and concentration of transplanted MSCs. They

found that seven of 60 patients with defects of the shaft of

the tibia did not achieve union.60 In these patients the mean

number of MSCs in the graft was < 1000 cells per cm3 and

< 30 000 cells in total. Both the mean concentration and the

mean number in patients who had not achieved union were

significantly lower (p < 0.01) than in those in whom union

was successful.60 Therefore they considered that a graft

needed to contain at least > 1000 MSCs per cm3 to achieve

union. This has implications for the technique used to iso-

late MSCs since the aspirate is not guaranteed to contain

the required total cell count.50 However, recent studies by

Wongchuensoontorn et al61 have demonstrated two tech-

niques for increasing the volume of bone marrow applied to

a bone defect. First, small volumes preferably within the

range of 2 ml to 4 ml should be aspirated from the site since

larger volumes dilute the bone marrow with blood, and sec-

ondly, the concentration of MSCs should be increased by

centrifuging the aspirate before injection.61 In contrast to

the classic laboratory procedure, separation by density gra-

dient does not require training and allows the processing of

stem cells at the bedside.61 Although Hernigou et al60

demonstrated an approximate estimate for the number of

MSCs required for bone regeneration, the number of viable

cells after implantation into man has not yet been analysed.

The future of MSCs for clinical practice

The process of harvesting MSCs is a simple, stepwise pro-

cess as illustrated in Figure 4. It is clear from the various

Isolation
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or

3.2 MSCs applied directly to injured 

tissue by injection or applied on scaffold
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3.3 MSCs are genetically modified and 
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Fig. 4

Diagram showing the process of applying mesenchymal stem cells
(MSCs) for bone repair. 1. These are first isolated from the bone marrow
or other sources including adipose tissue/muscle/umbilical cord. 2. They
are either expanded to increase the number or directly applied to the
bone site after centrifugation. Growth factors can be added if expanded
ex vivo to increase the yield and to differentiate towards different lin-
eages. 3.  After expansion the MSCs are then either applied through a
scaffold or percutaneously injected at the site to aid regeneration of
bone.
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studies discussed above that the application of MSCs to

bone defects enhances bone formation without any adverse

reactions to the patients. However, the success is limited so

far because of the small numbers in the trials, the lack of

controls and the short follow-up. Furthermore, most stud-

ies have investigated the application of MSCs in ‘worst-

case’ clinical situations. Future studies need to explore the

use of MSCs as a first-line treatment for bone defects, after

the acquisition of adequate data to verify their effectiveness

in bone repair and regeneration.

The transition of MSCs to clinical practice is developing

fast as evidenced by major advances in studies performed

on animals by introducing scaffolds and gene therapy.

However, there are aspects of the application of MSCs

which need further investigation (Fig. 5). Despite the

advances in using MSCs on scaffolds, few studies have

applied this technique in clinical trials. Studies in man can

evolve by comparative studies to discover the optimal scaf-

fold and by expansion into nano-scaffolds, particularly

under strain models to determine mechanical stability.

Genetic modification of MSCs has not been addressed in

human bone healing because further studies are required to

find the optimal and best combination of growth factors

along with finding optimal non-viral vectors.

The future of stem cells looks promising as advances in

tissue engineering, biomaterials and cell biology converge

to enable stem cells to play a major role in the repair and

regeneration of bone.
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Diagram showing details of future mesenchymal stem cell (MSC) studies which are required for bone healing. There are aspects of
MSC protocol which could be investigated further to aid the use of MSCs in clinical practice (2D, two-dimensional; 3D, three-dimen-
sional).
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